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ANOMALOUS HYDRODYN~IC FLUCTUATIONS DURING THE DEVELOPMENT 
OF THERMAL CONVECTION* 

O.A. GRECHANNYI and V.V. TOKARCHUK 

The spectral functions of the fluctuations of the hydrodynamic variables 
in an inhomogeneously heated liquid in the region of Rayleigh numbers 
close to the threshold of convective stability have been calculated using 
the equations of the correlation theory of thermal fluctuations in non- 
equilibrium statistical systems. It is shown that anomalous fluctuations, 
which form the structure of the flow in the regions of supercritical values 
of the Rayleigh number are of an essentially non-equilibrium nature and 
are completely accounted for by the long wavelength part of the correlation 
functions. The results of the calculations are used to analyse the effect 
of large-scale fluctuations on the Rayleigh scattering of radiation. It is 
is shown that, in a region where thermal convection develops, they are 
responsible for a phenomenon which is analogous to the critical opalescence 
of light during equilibrium phase transitions of the second kind. 

The investigation of the dependence of the spectral functions of 
thermal hydrodynamic fluctuations on the degree of non-equilibrium in 
statistical systems is of great significance in the development of optical 
methods for the noise diagnostics of inhomogeneous flows of liquids and 
gases. Systems which are far removed from thermodynamic equilibrium and, 
in particular, the fluctuation mechanisms of processes involving the self- 
organization of flow structures when there is loss of stability are of 
special interest. A large number of papers (/l-4/, for example) have 
been concerned with the study of the anomalous hydrodynamic fluctuations 
which develop close to the thermal convection threshold in a liquid which 
is heated from below. However, the results obtained in the majority of 
these papers are contradictory as for example, in /l/ and /2/. This is 
explained by the previously discussed /5-?/ incompleteness of the theories 
of non-equilibrium hydrodynamic fluctuation theories which were employed. 
In this paper an analysis of the anomalous fluctuations during the 
development of thermal convection is carried out using the solution of 
the equations of the theory in /6/ which enables one to evaluate the 
results which have previously been obtained from common positions- 

1. Initial equations and forunrlation of the problem. Let US consider a one- 
component inhomogeneous continuous medium which is described by a system of Navier-Stokes- 
Fourier equations for the mean values of the density n, the hydrodynamic velocity u and the 
thermal energy density e= %I, kBT, where krr is Boltsmann's constant and T is the mean value of 
the temperature. We shall write this system of equations in the symbolic form: 

rl 
- 0, ir! 

;- .I,[@; r] m: 0. vr-0. 1, 2,:3, r, (1.1) 
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where Q,= (n, ul, ur, u3, e). Let us denote the fluctuations of the hydrodynamic fields by @b,(v= 
0,1X% and &b = (an, Su,, 6u,, au,, tie). 

In the linear theory of non-equilibrium thermal fluctuations /6/# the pair correlation 
functions of the hydrodynamic variables are broken down into two parts 

<h%(t + r, r,)8%(& IQ) = c+(t + r, r,: t, rlf -I- BaV(t + z, r,; t, rJ (1.2) 

such that c(,,,, (t, rl: t, r2) N 6 (rl - rJ and pILV(trrl;tr rz) describes the long wavelength spatial 
statistical links of a non-equilibrium nature. The dynamics of the two-time correlators of 
the non-equilibrium hydrodynamic fields are determined by the solution of the linearized 
equations /6/ 

(1.3) 

(L$,~ [a; r]cp(r)-= S dr'cp(r')SA, [@;r]/Q(r')) 

with the initial conditions 

a,,(t,r,;t,r,)=a,,(t, rl,C& B,,Y(C r,; t, re)=4WfG r1r 1%) (1.4) 

Here, .$,y' are linearized Navier-Stokes-Fourier operators, US@V (r) is a functional 
derivative and a,, and b,, are the single-time correlation functions of the small-scale and 
large-scale fluctuations. 

It follows from kinetic theory /6/ that 

(4.5) 

(F is a single-particle distribution function which satisfies the Boltzmann equation). The 
explicit form of the solution of the Boltmann equation in an approximation which is linear 
with respect to the gradients of the hydrodynamic variables enables one to obtain 

from (1.5). Here, p is the pressure, &l is the Kronecker delta, P,z are the components of 
the stress tensor, qk are the components of the thermal flux and 11 and h are the viscosity 
and thermal conductivity respectively. 

It is impossible to calculate the single-time correlators b,, of the large scale fluctu- 
ations directly. They are defined by the solution of the system of equations /6, 7/ 

the inhomogeneous terms of which describe the processes involved in the generation of large- 
scale fluctuations in non-equilibrium systems. The dependences of H,, on the mean values of 
the hydrodynamic variables and thermodynamic forces have been obtained in /6/ and /7/ and, in 
the approximation which is linear with respect to thermodynamic forces, have the form 

Eqs. (1.2)-(1.8) constitute the basis of the linear correlation theory of non-equilibrium 
thermal hydrodynamic fluctuations which assumes that the fluctuations are small compared with 
the mean values of the physical parameters and, consequently, is not applicable in a small 
neighbourhood of the stability threshold where the susceptibility of the system is anomalously 
large. 
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Nevertheless, these equations can be used in a study of the general tendency of the change 
in the spectral properties of the fluctuations when the state of the system approximates to 
the stability threshold. We shall make use of them for a statistical description of an in- 
homogeneously heated liquid which is characterized by a value of the Rayleigh number which is 
close to the critical value. 

Let us consider hydrodynamic fluctuations during the development of thermal convection 
in an immobile liquid occupying a closed space which is heated from below. Let the size of 
this closed space in the vertical direction be so small that the effects of compressibility 
may be neglected and the Oberbeck-Boussinesq simplifications /8/ which are traditional in 
problems of convective stability can be used. We shall confine ourselves to the case of a 
stationary temperature distribution in the cavity. In this case the solutions of Eqs.Cl.1) 
of the form 

n.--I). tr- -as, a=~collst)o, E .~(~~--"(1,&,,~0,e,=11 (1.9) 

are the conditions for the mechanical equilibrium of the medium (the Oz_-axis is directed 
opposite to the g vector for the free-fall acceleration). 

Let us change to dimensionless quantities in Eqs.(l.3) and (1.7) by choosing, as the 
units of measurement of time, distance, velocity, temperature and pressure, the quantities 
h*v'-1, h, @-I, ah, ~YXP respectively, where v = np-', % =h (XC,,)-" are the kinematic viscosity 
and thermal conductivity and cil is the heat capacity. 1n the approximation being considered, 
the dimensionless quantities -1, have the form 

(1.10) 

In the case of (1.9), it is only those components of the tensor H,, in (1.8) which allow 
for the generation of spatial correlation of the fluctuations of the vertical component of 
the velocity and temperature 

Ha, = H,, = 6 (rl - t.,),V, QT, Q = kBn (pvx)-l (IAi) 

which differ from zero. 
The dimensionless unit Q characterizes the level of intensity of molecular noise in the 

non-equilibrium stability of the system and has the meaning of the ratio of the thermodynamic 
force to the force of dissipation. 

The formulation of the problem is completed by setting out the boundary conditions for 
Eqs.(l.3) and (1.7). Subsequently, we shall be considering the case of a closed cavity in 
the block of a highly conducting solid for which 

&D, (f, P) jr zs L:z 0 (1.12) 

where s is the surface of the cavity. 

2. Anomalous fluctuations close to the threshold of convective stability, 
In solving the system of Eqs.li.31, (1.7) taking account of (1.9)-(1.11) subject to conditions 
(1.4) and (1.X?), we shall make use of the fact that the boundary value problem 

for the linearized operators (1.10) is selfadjoint /8/, it has a discrete spectrum of eigen- 
values yi = vi (Ra), i = 0,1t 2,. . ., and the eigenfunctions corresponding to them satisfy the 
normalization conditions 

The value of the Rayleigh number Ra-Ra,, for which yo(Ra,)=O, determinesthestability 
threshold of the system. When Ra< Ra,, all the eigenvalues of problem (2.1) are positive 
/a/. 

We shall use the stationary solutions of Eqs.(1.7) of the form 

Let us substitute (2.3) into (1.7) taking account of (2.1). Then, by using the normal- 
ization condition (2.21, we obtain an algebraic equation for bii, the solution of which, 
allowing for (l.ll), has the form 



bjj = 
QPrHa 

Yi(Ra) + YjCRa) H<jv Hij= G 1 drT [Yz{Ydj + Y,tY,jl 
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,(2.4) 

Let us now consider expressions (2.3) and (2.4) in the domain of values of Ra close 
to the minimum critical value R%. Since y. (Ra,)= 0, the term with i=j=O makes the main 
contribution to the sum (2.3) in the case of a non-degenerate ground state level. By 
including in this term the first non-disappearing term of the expansion of Y,,(Ra) in a 
Taylor's series about the value Ra = Ra,, we obtain 

Here, cto = [-- dy&d Ral IF+R~, > 0. It follows from (2.5) that large scale fluctuations in a 
confined system close to the stability threshold are correlated over the whole of its volume. 
The synchronous spatial statistical links are anomalously reinforced in inverse proportion 
to the distance to the threshold of convective stability. This is identical with the result 
presented in /l, 4/. The nature of the anomalous reinforcement of the synchronous correlations 
turns out to be different in the case of systems with a continuous spectrum of eigenvalues 
of problem (2.1). 

If the horizontal dimensions L of the system are substantially greater than the vertical 
dimensions, then, by analogy with /l/, we may put j=(n, k) in (2.3) and (2.4) 

Y@j(r)G Trp*k (P) = L-'esp (ik.rll) Z,, (z, k), n=o, 1,2,. . . (2.6) 

Here, k and P" are vectors in the horizontal plane and z is the vertical coordinate. 
Expressions for b,,, analogous to (2.3) and (2.4) can be found by making use of the 

normalization condition for the functions (2.6) 

As the horizontal dimensions of the system are increased the eigenvalue spectrum of problem 
(2.1) becomes more dense and, in the case of an infinitely large horizontal layer, passes 
into a spectrum which is continuous with respect to k. Since, in this case, summation over 
k should be replaced by integration and it follows from (2.4) that 

Hij= $$ H,,m6 (k + k’), H,,(k) = G 5 dzT [Z, .Zn + Z,,Z rln] 

expressions (2.3) and (2.4) in this case are transformed into 

bbv(r.1,r2)- Sdkexp(ik.(r,ll -r,'l))b,,Z~&, 
n,m=o 

b,,(k) = w 
H,,,,, (‘4 

Y,, (Ha, U + K(Ra, N 

(2.7) 

Let us now consider representation (2.7) in the domain of values of the Rayleigh number 
close to the convection threshold. The solution of the equation v"(Ra*, k)=O defines the 
neutral curves Ra, =Ra*,, (k) in the (Ra, k) plane which separate regions of stability and 
instability which, for any n, have a minimum. Let k,, be the critical wavenumberfor which 

d Ra,, (k)/dk IK=;,~ = 0, da Ra*n (k)ldk’ Ik=:t,,, > ” 

Then, the minimum critical value of the Rayleigh number, which determines the threshold 
of convective stability, is 

Ra,=min Ra*,(lc)=Ra*, (k,) 
n. h-,, 

where k, = k,,. In the region close to Ra, 

v. (Ra, k) = a, (k) IRa,, (k) - Ral 

and Yn > YO when n=i,2,3,.... Hence, in the sum in (2.7), the term with n=m=O as 
Ra-+Ra, is [Ra, - Ral-' times greater than the remaining terms in the series. By retaining 
terms in the series. By retaining just this dominant term, we obtain 

b,, (r,, re) = (2.8) 
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yrr Ha 
--I 

’ dk Ir,,,,(I,)L’s~l(II\.(r,‘-r2’)) 
8na n.(h)[Ha*"(b)-- Ra] Ze,,(;. k)x,,(~~, k) 

We shall evaluate the integral in (2.8) allowing for the factthat,when (Ra, - Ra)iRa;= 

E<l, a narrow region of k values close to kc makes themain contribution to it. When this 
is so, by applying the asymptotic Laplace method for the case k, 1 rl” - r,,” j >> 1, we obtain 
(Jo is a zero-order Bessel function) 

&,, (rl. r2) =B(k,) R,(E) exp (- RR;‘(E)) J, (k,R) /.: 
Z,, (I~. k,) Z,, (z,, k,), R’= 1 r1 11 - r2 1: 1 

B (k,) = Q Pr Ra kc3H,, (k,) [4 Ra, a, (kc)]-’ 

(2.9) 

Kc (E) x 
P”’ (A! ) 

d , 
d” W,, 

F’/’ 
$2 (k,) : (2 Rap 7 

,L= rc 

The quantity R,(E) has the meaning of the correlation radius of the hydrodynamic 
fluctuations in the horizontal plane. 

It follows from (2.9) that, close to the natural convection threshold in a horizontal 
layer of gas which is heated from below, the statistical relations propagate throughout the 
whole system in the vertical direction and up to a distance of the order of R,inthehorizontal 
direction. When E<l, the intensity of the large-scale fluctuations and their correlation 
radius increase as E-'lZ. 

This isidenticalwiththe resultobtained by the Langevin method /l, 4/ and is associated 
with thefact that the values of the critical indices are determined by the spectral properties 
of the linearized operators A;,,, which form the left-hand sides of the dynamic equations 
both in the Langevin method as well as in the method used here. At the same time, the co- 
efficient B(k,) in (2.9) differs from the results obtained on the basis of the Langevin 
equations of hydrodynamics with random sources in the Landau and Lifshitz form since, as was 
shown in /5/, no account is taken of the contribution from inhomogeneous flows in the generation 
of the non-equilibrium fluctuations when such an approach is used. 

Using the results which have been obtained, let us consider the time dynamics of large- 
scale fluctuations. In order to do this for the case of a confined cavity, we represent the 
solution of Eqs.(l.3) with initial conditions (1.4) in the form 

Plrv (r, rr; 0, rJ= i~~objex~ (- ryi) Y,, (d YW bJ (2.10) 

where the expansion coefficients bij are defined in (2.4). When E<l, it follows from 
(2.10) and (2.4) that 

P&,,(T, r,;O. rz)= exp(- ~-cF~(S))b,,(r,, rJ (2.12) 

The coefficient bU, is defined in (2.5) and the quantity 

z, (5) = @J%S)-' (2.32) 

is the attenuation time of.the correlations. Formulae (2.11) and (2.12) describe the effect 
of the anomalous retardation of the large-scale hydrodynamic fluctuations close to the con- 
vection threshold. 

Similar formulae can also be obtained for an infinite horizontal layer. In this case 
the coefficient bllv in these formulae is defined by expression (2.7) or (2,8),r,+z,'~, where 
Te ’ = q II + (k - kc)2R,‘]-‘. 

Let us now consider the dynamics of the small-scale fluctuations when thermal convection 
sets in and, in fact, we shall represent the two-time correlators aw,, in the form 

By using (1.4) and (2.2) and the dimensionless form of expressions (1.6), we obtain 

In the critical region of Ha values the relation 

(2. I:,) 
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follows from (2.13). Formulae (2.12) and (2.15) describe the effect of the anomalous retar- 
dationof small-scale fluctuations close totheconvection threshold (attenuating modes slowly 
develop when i= 0). However, unlike in (2.11), where, according to (2.51, B,,-Q~-‘~ the in- 
tensity of the small-scale fluctuations close to the convection threshold is, according to 
(2.15) and (2.14), ,a,,-Q and hence c+J~~,.-~ -5<1. It follows from this that it is possible, 
in general, to neglect the contribution from small-scale thermal noise in the process leading 
to the onset of convection. 

We note that, in the theory in /2/, only the part of the non-equilibrium fluctuations, 
CQ,,, was calculated while the part B&v was completely neglected. In this case the conclusion 
drawn in /2/ concerning the insensitivity of the intensity of the hydrodynamic fluctuations 
towards the development of natural convection is erroneous since, in fact, the intensity of 
the large-scale fluctuations increases when k<l. 

The dependence of the intensity of the long-range correlations on the parameters of the 
system which has been found is identical with the result in /3/ which was based on kinetic 
theory. This is dictated by the fact that the equations for the spatial correlations which 
are used in this paper are the hydrodynamic asymptotic solutions of the kinetic equations 
given in /3/. 

3. Critical opalescence during the onset of thermal convection. We shall 
show that the anomalous reinforcement of the intensity of the large-scale fluctuations in the 
hydrodynamic fields when E<l is the cause of the sharp increase in the intensity of the 
scattered light. For the analysis of the radiation which is scattered by a planar layer of 
a gas which is heated from below we shall calculate the two-time, two-point correlation function 
of the fluctuations in the permittivity &a of the scattering medium. We shall confine the 
vibrational frequenct range to conditions under which the Oberbeck-Boussinesq approximations 
are applicable /a/. Since 6p = --p,,@T in this approximation, it follows from the equation 
6s = (6~/6p)& $- (SE/~T)~~T that 6s - 6T and the final expression for the correlation function 
can be immediately written down: 

@a (t + 7, r$e (t, r2)> = c (ZJC (z,) <6T (t i r, r$T (t, G)) = (3.1) 
c (0 (z,)(ah)* 1~ (t + r, r,; t, r2) + IL (t + 7, r,; t, r2N 

c (z) = IW~Tb - pOS (6ebb I 

where, as before, the correlators ck4, ob4 are dimensionless. Hence, inthe Oberbeck-Boussinesq 
approximation we are dealing with thermal waves. 

The sharp increase in the intensity of the fluctuations in the immediate vicinity of the 
convection threshold generates chaotic convective motion of macroscopic volumes of the medium. 
Nevertheless, in the neighbourhood E = 0, it is possible to pick out a domain of values of 
E where the intensity of the fluctuations is still not very large and the Born approximation 
for the modelling of the electromagnetic field within an optical inhomogeneity is valid. In 
this region, the spectrum of the single-pass scattering of light by a volume V of an inhomo- 
geneous medium in a direction n = t/r when Ir I> V’/a is defined by the expression /9/ 

l(m,n)= He(M i dz SdrlS dr, exp(i[r(o-mw,)+ x.(rr- rz)])rc (3.2) 

(6e(t +r.r,)Se(t. r;)J=nsjx;i~~~~r~ji., X 

c (4 c (4 fL (t + T, rl; t, rz) exp Ii [T (0 - WJ + xv h - 5) I) 

Here, Ra {*} is the real part of the expression {.},G is the angle betweenthedirection 
of polarization of the incident wave and the direction of observation and % x0, IO are the 
frequency, the wave vector and the intensity of the exciting radiation. The integrand in the 
second equality of (3.2) is written in dimensionless variables (in doing this, the previous 
notation is retained for the dimensionless parameters). 

Let us now consider the scattering of a beam of exciting radiation withatransversecross- 
section in the form of a circle with an area Swhich is incident at an angle (I on the plane 
of the layer. We shall rotate the coordinate system introduced in Sect.1 in such a way that 
the axis of the beam lies in the r,z-plane. By substituting Eqs.(2.10) and (2.8) into (3.21, 
we have in the case of values of the angle u that are not too small 

(3.3) 
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Xl. -ii,- 

exp{i[T(o--O)+R.(xfl -k)]}exp(-~~o(E1k)l x 

H,,(k) % (~1, k) la, (k) (R&.0 (k) - WI-’ 
I - -4__ x k El; --, E,, (~4, k) =‘i dz, dz,c (q) c (zz) exp {- ix1 ( 21 - 22)) 24" ($)240 (G 

0 
6 

0 % 5 
--__ 

Y 
___ I 

x” 
‘p 

Here S,is the area of the horizontal cross-section of the 
scattering volume, ~1' = Xl1 (e,o,cp) is the projection of the vector 
x onto the horizontal plane and ~1 = xl (O,u,v) is the projection 

Fig.1 of the vector x onto the Oz-axis (Fig.1). 
Let us first evaluate the integral with respect to R. In 

doing this, we take account ofthefact that the magnitude of the optical inhomogeneity R, 
attains macroscopic dimensions when Eel. We shall consider the case when a broad beam of 
radiation is incident on a planar layer of liquid which is heated from below, that is, when 
the condition (S,)'/l> R, is satisfied. In this case the integral with respect to R, when 
account is taken of the asymptotic behaviour of (2.91, can be extended onto the whole of the 
horizontal plane 

~dRexp(R.(x~ -k)}= S dR exp {iR. (XII -k)} = (2~)~ S (x II - k) 
cc 

When this is done, the following equation follows from (3.3): 

I(o.ll) = I (%I, 1 x ” I) Yo 6 I x ” I) 1 

(0 - @")a -t vr?(<, I z" I) ha,, (Ix" I) -ha 
I(xl,(x!l I)=M'SQPrRa H,,(ld ))&,(x~,~x~~ 1) 

(3.4) 

Close to the convection threshold the spectral distribution of the intensity of the 
scattered radiation has a sharp peak in the region of values of the wave number 1x4 I close 
to kc. In fact, since, when 

1 I x ‘1 I - k, ) /kc < 1 (3.5) 

we have 

Ra,,(/xu I)=:Ra+(Ra,-Ra)p(lxll ]) 

Yo(Ixfl I)- r,-'q (1%" I )> q (I x” I ) = 1 -I- (I x” I - kc)8R,a 

whereupon it follows from (3.4) that 

Z(0, q)=C 
cl9 RC2 

(co - q)* + r-“q* e 1 + (I x ” 1 - kJa Rca (3.6) 

Hence, the anomalously increasing large-scale hydrodynamic fluctuations give rise to the 
Lorentzian lineshape for the scattered radiation which becomes narrower and narrower without 
constraint when 5-O. When 1x11 I= kc, its intensity increases in inverse proportion to the 
distance to the stability threshold. The specific angular dependence of the non-equilibrium 
critical opalescence in expression (3.6) is associated with the occurrence, when E<C of 
optical anisotropy of the planar layer and the existence of a finite lower limit for the wave 
numbers k, of the anomalous fluctuations. This dependence is the unique difference between 
the characteristic terms in (3.6) and the characteristic terms of the corresponding expression 
in /9/ for the intensity of the scattered light close to the critical points of equilibrium 
systems. 

We shall investigate the angular dependence of the anomalous scattering. The explicit 
expression for 1 XII 1 has the form 

1 x ‘I (0, cr, cp) 1 = 2 1 x0 1 sin (l/,0) [I - cos* 0 sin* rp]-’ x 
(sin D [cd (I/@) - co.9 G sina rp]“’ - sin (1/,@ co9 0 cm rp) 

(3.7) 

(the angles 0.0 and 'p are shown in Fig.1). In particular, it follows from (3.7) that, when 
o--n/2, we have 1xu I-I*,IsinO and it is independent of the angle 'p. 

Let us now consider the condition lx” (O,,o,f)l= k, which determines the directions of 
the maxima in the anomalous scattering map. Taking account of (3.71, we find 

(3.8) 



345 

Here, 1, = 2n 1 x0 ) -’ is the wavelength of the incident radiation, h, = 2nh,-’ is the wave- 
length of the critical fluctuations (for the case when both boundaries of the layer are solid 
and absolutely thermally conducting, A, -z/l/8/). In the case of optical radiation with h,- 
i(i-7 m incident of layer of liquid with a thickness, h-l()-3m confined by solid walls, the 
quantity Bo- ia-44 1. At the same time, we find Be zoo= &!A, from (3.8), that is, in the given 
case the angle of maximum scattering is very small. As h, is increased up to ). = l,f (a, cp). 
where 

the magnitude of Bc increases up to macroscopic values of the angles. In the wavelength region 
A,>-)# inequality (3.5) is not satisfied and therefore, according to (3.4), such waves do 
not experience anomalous scattering close to the convection threshold. 

Hence, when light is scattered by a planar layer of liquid which is close to the natural 
convection threshold, a phenomenon is to be expected which is analogous to critical opalescence 
during equilibrium phase transitions of the second kind. At the same time an angular effect 
should be detected which is associated with the existence of a finite upper limit of the wave- 
lengths of the critical fluctuations & in an inhomogeneous system. The value of the "angle 
of non-equilibrium critical opalescence" & is determined by the wavelength of the incident 
radiation. In the region of radiation wavelengths which are comparable with &, this angle 
reaches macroscopic values. 
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